

Elastic Support of Turbines

Modern Turbine Houses

Table foundations for turbines have been an almost universal practice in the past. Thick base mats were required as a dynamic "counter mass" to prevent significant settlement, especially in case of poor subsoil conditions. More than 40 years ago, GERB together with the turbine manufacturers has developed the spring support for smaller size turbines. This system was applied for the first time in a nuclear power plant in 1968, to support a 600 MW turbine.

Today, spring support is used worldwide for turbines of all capacities up to 1700 MW. Many international specifications call for elastically supported foundations. Leading manufacturers of turbines and power plants, using the GERB system, emphasize the following advantages:

- Dynamic uncoupling of the turbine foundation from the substructure consisting of the supporting beams or columns.
- Integration of this substructure into the turbine building.
- Better load distribution due to the spring support.
- Easy adjustment and realignment in the event of settlement. Adjustments can be carried out even without interrupting the operation of the machine.
- Possibility to monitor the operation of the foundation system and to detect settlement using GERB monitoring equipment.
- Protection of the turbine from earthquake damage.
- More space below the turbine for the arrangement of condensers and piping.
- Significantly lower foundation cost by saving the basemat.

Spring elements for elastic support of turbines are manufactured by GERB. High quality coil springs are fitted into rigid steel boxes designed to resist prestressing. GERB spring elements are maintenance free and equipped with a high quality corrosion protection system.

In order to protect the turbine from earthquakes and to avoid resonance amplified vibration amplitudes Viscodampers® - also developed by GERB - are supplied.

Dampers are either integrated into the spring units or supplied separately.

GERB spring units are fastened to the column heads and to the turbine table without bolts by adhesive resilient pads. Height adjustment of the table or lateron required height adjustment is done by using steel shims.

GERB not only offers spring units and Viscodampers® but also complete design and full civil engineering of the turbine foundation including earthquake analysis.

Installation or supervision of installation is part of GERB supply. In case of later foundation settlement due to poor soil conditions GERB mounting engineers can easily readjust the foundation system.

Typical Mode Shape of a Turbine Table

Installation and final adjustment of spring elements

Spring Supported Turbine and Condenser

Fig. 1, 2	Recesses in the form- work above column heads
Fig. 3	Placing of lower ad- hesive pads
Fig. 4	Placing of prestressed spring units
Fig. 5	Placing of shims
Fig. 6	Covering of the spring units with a steel plate
Fig. 7	Spring units after removal of formwork
Fig. 8	Leveling of spring units with hydraulic jacks
Fig. 9	Spring unit in final position

LMZ, Tianwan, China

BHEL, Bellary, India

ABB, Hefei, China

Alstom, Flamanville, France

Spring Supported Turbine Foundations Reference List (Excerpt) – representative for more than 500 installations

Country	Power Plant	Turbine Manufacturer	Capacity (MW)	
Steam Turbines in Nuclear Plants				
Argentina	Atucha 2	KWU	745	
Austria	Tullnerfeld	KWU	730	
Brazil		KWU	2 x 1,300	
China	Tianwan Ling Ao	LMZ Alstom	2 x 1,000 2 x 1,000	
Finland	Olkiluoto 3	SIEMENS	1,600	
France	Belleville Flamanville I, II Flamanville III	Alsthom Alsthom Alstom	2 x 1,300 2 x 1,380 1,650	
Germany	Biblis A+B	KWU	1,145 + 1,240	
Spain	Trillo	KWU	1,300	
Switzerland	Goesgen	KWU	920	
Steam Turbines in Conventional Power Plants				
Australia	Loy Yang A+B	KWU, Hitachi	3 x 500 + 500	
Austria	Dürnrohr	KWU	405	
Belgium	Drogenbos	Alsthom	172	
China	Beijing Dabieshan Hefei	ABB Alstom ABB	2 x 190 2 x 600 2 x 350	
Denmark	Skaerbaekvaerket	MAN Energie	414	
Finland	Meri Pori	ABB	580	
France	Refuse Incinerator Rouen	Dresser Rand	32	
Germany	Niederaussem Walsum	Siemens-KWU HITACHI	900 750	
Great Britain	Elean	ABB Power	48,5	
Greece	Komotini	Ansaldo	175	
India	Simhadri/NTPC Talcher 1+2, 3 – 6/NTPC	BHEL ABB, BHEL	2 x 500 2 x 500 + 4 x 500	
Indonesia	Kota Baja	Siemens	5 x 80	
Ireland	Lough Ree Power	Fuji	100	
Italy	Pietrafitta	Ansaldo	2 x 75	
Japan	Shin Oji	ABB Turbinen	14.7	
Korea	Ulsan	BBC Baden	3 x 400	
Kuwait	Az Zour Sabiya	Toshiba Mitsubishi	8 x 300 8 x 300	
Malaysia	Port Kelang	Mitsubishi; GE	2 x 300 + 500	
Netherlands	Hemweg 7+8	ABB	2 x 500	
Poland	Tychy	Skoda	40	
Russia	St. Petersburg North-West	LMZ	2 x 140	
Saudi Arabia	Shoaiba	ABB	3 x 393	
Singapore	Tuas South	MHI	2 x 66	
Sweden	Malmö Nyköping	Alstom ABB STAL	250 80	
Turkey	Baymina	Alstom	320	
UAE	Jebel Ali Jebel Ali	ABB Alstom	200 3 x 235	

Turbine Column Head

Gas Turbines

USA

Leykam/Norske Skog Centrale de Drogenbos Naestved Rouvaniemi Papeterie Chevron HKW Merkenich HKW Munich Blackburn Kayamkulam Sabah Shipyard Pietrafitta Kulim Schoomansmolen Eerbeek Khanom Barge St. Petersburg South Kaliningrader TEZ-2 Helsingborg University of Texas

EGT	57
Siemens-KWU	2 x 145
ABB STAL	25
ABB STAL	26
EGT	4,5
Elin GE	72 2 x 150
Alstom Sweden	55
BHEL	2 x120
GEC Alsthom	120
Siemens	250
Elin	4 x 35
ABB STAL	2 x 25
Mitsui/Alstom	175
ABB LMZ	65 150
ABB STAL	55
Westinghouse	60

For a proposal of a spring supported turbine foundation please provide the following data:

- Manufacturer and type of turbine
- Machine loads (stator, rotor, condenser)
- Speed (rpm)
- Layout drawing of the foundation

Further data for the substructure, subsoil and if applicable seismic loads would help us to optimize our proposal.

GERB Schwingungsisolierungen GmbH&Co.KG

Roedernallee 174-176

13407 Berlin/Germany Tel. +49 (0)30 4191-0 Fax +49 (0)30 4191-199

Ruhrallee 311 45136 Essen/Germany Tel. +49 (0)201 26604-0

Fax +49 (0)201 26604-40

info@gerb.com www.gerb.com

